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A sintering model, taking into account the effect of particle-size distribution and the effect of 
grain growth, has been derived. The model predicts a dependence of densification on the 
width of the particle-size distribution. This dependence is strongly affected by the occurrence 
of grain growth. Prior to the occurrence of grain growth, the model predicts that the 
densification rate increases and then decreases as the particle-size distribution width of the 
original powder increases. After grain growth occurs, the densification rate decreases as the 
particle-size distribution width of the starting powder increases. 

1. Introduct ion 
The changes of microstructures during sintering are 
influenced by a host of factors which are determined 
by the chemical and physical properties of the raw 
powders. The influence of chemistry, such as additives, 
has received wide attention. On the other hand, the 
effect of particle-size distribution on sintering has been 
not so well studied [1-4]. Investigations on com- 
paring the sintering behaviour of powders with the 
same average size, but varying the size distribution 
width are limited. 

It has been suggested that mono-sized powders are 
preferable in producing dense, uniform, fine-grained 
microstructures [5-10]. These results have encour- 
aged the production of nearly mono-sized powders 
and, in addition, raised the question of how narrow a 
size distribution is required. This poses a question of 
the dependence of sintering kinetics on particle-size 
distribution. 

An early theoretical work on the effect of particle 
size distribution was carried out by Coble [11]. The 
work focused on the densification in the initial stage of 
sintering. The diffusion model, for both lattice diffu- 
sion and grain-boundary diffusion, of the initial stage 
of sintering was developed. The model predicted that 
the sintering rates for binary mixtures were inter- 
mediate between the behaviour of the end-member 
sizes, and a 25% increase of sintering rate could be 
obtained when interstitial particles were introduced. 
Unfortunately, there are no experimental data to sup- 
port this model. In addition, parameters character- 
izing particle-size distribution did not enter into the 
modelling. It thus becomes impractical in predicting 
the sintering kinetics of powders characterized by a 
common distribution function. 

Recently, a model for both the initial and the inter- 
mediate stages of sintering was developed [2]. The 
model predicted a decrease in sintering rate as the 

particle-size distribution width increases for both the 
initial and the intermediate stage of sintering. This is 
apparently contrary to Coble's model and the model 
on bimodal powders [12]. Here, also, no experimental 
data are available to support this model. In fact, one 
can expect the benefit of adding finer powders to 
mono-sized powders because of the higher driving 
force provided by them. 

The purpose of this study was to reinvestigate the 
effect of particle-size distribution on sintering kinetics. 
Both the initial stage and the later stages of sintering 
were investigated, and o n l y  lattice diffusion and 
boundary diffusion were included. 

2. Background 
In the past, a number of sintering models have been 
reported for both the initial stage of sintering [13-27] 
and the later stages of sintering [28-36]. The resulting 
equations can be summarized as follows. For the 
initial stage of sintering 

AL KIDys~W 
- t"  ( 1 )  

L o G " k T  

where K 1 and w are constant, D is the diffusivity, 7s is 
the surface energy, D is the atomic volume, G is the 
particle or grain size, k is the Boltzmann's constant, T 
is temperature, and rn is a constant depending on the 
diffusion path. For the later stages of sintering 

ysDD. , 
f ( P )  = K 2 G ~ ( t  f - 1 ~n) (2) 

where f ( P )  is a function of porosity P, K 2 is a con- 
stant, and tf is the total sintering time. Most work 
[28-36] indicated that f ( P )  is linearly proportional 
to P. 

The above equations do not include the effect of 
grain growth. In fact, there are similarities between 
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models of the initial stage and the intermediate stage 
of sintering [35,37]. In addition to the geometric 
similarity, the other similarities include transfer of 
matter from particles to adjacent pores through a 
similar mechanism prior to the occurrence of grain 
growth. In fact, both Equations 1 and 2 can be 
represented by [2] 

t n 
R = K 3 G m~ (3) 

where R denotes a general relative shrinkage at time t, 
mo is a constant depending on the diffusion path, and 
K 3 is a constant. 

When grain growth occurs, Equation 3 is not ap- 
plicable, in that the grain size is a function of time. 
Recently, sintering equations incorporating grain 
growth have been derived [38, 39]. The resulting equa- 
tions can be expressed as 

~(t) 
R(t) = K a - -  (4) 

where R and G now depend on time, Go is the original 
particle size, K 4 is a constant, and ml depends on the 
diffusion path. 

It can be seen that none of the above models takes 
into account the particle-size distribution. In the fol- 
lowing, we will be incorporating the particle-size dis- 
tribution into our sintering model. 

3. The model 
We first define a size-distribution function, f(G), such 
that 

dv = f(G)dG (5) 

f f (a)dG = 1 (6) 

where dv is the volume fraction of particles contained 
in G + d G .  

When shrinkage of a compact takes place, by com- 
bining Equations 3 and 5, the dimensional change of 
volume, dr, becomes 

~v = K 3 G)SG (7) 

The total dimensional change can then be expressed as 

t n 
Av = ~K3~gf(G)~G (8) 

As a result, the shrinkage of powder compact is 

t n 

= K3tnFo(G) (9) 

where Fo(G) denotes the shrinkage rate factor before 
the occurrence of grain growth and depends on the 
characteristics of the starting particle-size distribution. 
Equation 9 is applicable to the initial stage of sintering 
as well as to the intermediate stage of sintering prior to 
the occurrence of grain growth. 

When grain growth occurs, the rate of densification 
may be obtained by taking the time derivative of 
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Equation 4, i.e. 

dR 1 d 
- K4G,d, dt[G(t)] (10) dt 

For poly-dispersed grains, the dependence of grain 
growth on time can be expressed as [40] 

dt - K5 - (11) 

where Gg is the geometric mean size and K 5 is a 
constant. The above equation is applicable to grain 
growth in a single-phase system such as a dense body. 
However, it is used as an approximation in the current 
model for reasons to be discussed later. As a result, for 
powders characterized by some distribution function 
f(G(t)) (notice that the grain size is a function of time), 
the dimensional change of grains falls between G and 
G + ~G becomes 

1 1 

where K 7 is a constant. To proceed with the model- 
ling, it is assumed that grain growth is self-similar as in 
the normal grain growth [41]. The case where abnor- 
mal grain growth occurs will be discussed later. The 
assumption of self-similar grain growth would allow 
separation of variables to be applied to Equation 12. 
Therefore, Equation 12 becomes 

1 1 
~v = ~K6G-~(G;,  g GO)f(Go)SGoh(t)dt (13) 

where h(t) is some function of t and related to the 
grain-growth coefficient. Consequently, integrating 
Equation 13 over the size and dividing the result by 
the original dimension, we have the shrinkage ex- 
pressed as 

R =  ~fK6GI--~ol(G~,g ~)f(Go)h(t)dGodt/  

~f(Go)dGo 

= KTH(t)FI(Go) (14) 

where Go in Equation 14 is the initial particle size and 
is independent of time, f(Go) characterizes the dis- 
tribution of initial particle sizes, H(t) is the integration 
of h(t) over t, and FI(Go) denotes the rate factor 
of shrinkage as grain growth occurs. The effect of 
particle-size distribution on sintering kinetics can be 
obtained from Equations 9 and 14 by performing 
integrations to obtain Fo and F~. 

4. Results 
In order to perform the integrations, the commonly 
used log-normal distribution is assumed for the 
powder system to be analysed. The numerical values 
of constants m o and m 1 used in the integration are 
given in Table 1. Only lattice diffusion and boundary 
diffusion are considered here. In cases of evaporation- 
condensation and surface diffusion, the constants lis- 
ted in Table I need to be changed for modelling; and 
it will be seen later that similar results can be obtained 



T A B L E  I The numerical values of constants rn o and m 1 used in 
integrating Equations 9 and 14 

Boundary Lattice 
Diffusion Diffusion 

m0 Before grain growth 8/3 3 
m 1 Grain growth occurs 4 3 

in spite of the difference in these constants. In the 
modelling, powders with three different mean sizes, i.e. 
Gg = 0.5, 1.0, and 2.0 pm and various particle-size 
distributions, were included. 

Figs 1 and 2 plot the results for grain-boundary 
diffusion and lattice diffusion, respectively, before 

grain growth takes place. In all cases shown in these 
two figures, the rate factor increases and then de- 
creases as the starting particle-size distribution width 
increases. On the other hand, as grain growth occurs, 
the rate factor, F~, decreases as the starting particle- 
size distribution width increases. Figs 3 and 4 show 
such results for grain-boundary diffusion and lattice 
diffusion, respectively. In all the figures above, larger 
particle size reduces the rate factor. 

5. D i s c u s s i o n  
The model described above predicts a change of den- 
sification rate as a function of the initial particle-size 
distribution before grain growth occurs and as a 
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Figure 1 A plot showing the relationship between the rate factor, 
Fo, and the standard deviation prior to grain growth in the case of a 
lattice diffusion-controlled process. Gg: (O) 0.5 p.m, (0,) 1.0 gm, 
(V) 2.0 gm. 
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Figure 2 A plot showing the relationship between the rate factor, 
Fo, and the standard deviation prior to grain growth in the case of a 
boundary diffusion-controlled process. G~: (O)0.5 pm, (0 )  1.0 pro, 
(V) 2.0 p_m. 
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Figure 3 When grain growth occurs (in lattice diffusion-controlled 
process), the rate factor, FI, decreases when the standard deviation 
decreases. Gg: (O) 0.5 gm, ( 0 )  1.0 p.m, (V) 2.0 p.m. 
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Figure4 When grain growth occurs (in a boundary-controlled 
process), the rate factor, F1, decreases when the standard deviation 
decreases. Gg: (O) 0.5 p.m, (0 )  1.0 gin, (V) 2.0 p.m. 
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function of the initial particle size distribution after 
grain growth started. Prior to the occurrence of grain 
growth, the densification rate exhibits a maximum 
value as the initial particle-size distribution width 
increases. After grain growth occurs, the densification 
rate decreases as the initial particle-size distribution 
width increases. 

As pointed out earlier, the use  of Equation 11 
ignores the presence of pores because its derivation 
was based on a single-phase system. However, this 
ignorance can be neglected for the following reason. 
During sintering, the migration of pores with the grain 
boundaries commonly occurs so that the pore-grain 
structure remains fixed. This is particularly true when 
the grain growth remains normal so that pore and 
boundary separation is prevented. Under this circum- 
stance, the back stress [8, 40] or the Zener effect can be 
neglected for the first order of approximation. The 
effect of the back stress introduced by pores will be 
discussed later, which will show that qualitatively, the 
modeling results are not changed because of this back 
stress. 

Conventional definition on sintering depicts that a 
sintering process consists of three stages, namely, the 
initial stage, the intermediate stage, and the final stage 
of sintering. The division of a sintering process has 
been due to the attempts to model sintering 
phenomena [42]. It was pointed out earlier in this 
paper that not only have few modelling works been 
performed for the later stages of sintering but also that 
grain growth was generally not considered. In addi- 
tion, the border line between the initial stage and the 
intermediate stage is somewhat ambiguous. It was 
suggested that the intermediate stage of sintering oc- 
curs after the "end" of the initial stage and extends to 
the occurrence of a significant amount of closed po- 
rosity. During the intermediate stage of sintering, 
grain growth takes place. It is noted that grain growth 
is not a sufficient condition for the occurrence of the 
intermediate stage. This is not only because of the 
vagueness of the initiation of the intermediate stage 
but also due to the fact that grain-boundary migration 
and the resulting grain growth can begin when the 
porosity is sufficiently low [35]. In fact, without the 
consideration of grain growth, there are similarities 
between the models for the initial stage and most of 
the models for the intermediate stage, as stated earlier. 
Therefore, occasionally, the modelling equations of 
the initial stage and the intermediate stage were well 
used beyond the "border line" described above. Here 
we will divide the sintering process into two stages (1) 
before and (2) after the occurrence of grain growth. 
This is not only because of the fact stated above, but 
also due to the results obtained by us. 

Earlier models are normally based on approxima- 
tions in the geometry or diffusion flow fields due to the 
extremely complex geometry involved in the sintering 
process. A commonly used, and almost exclusively 
used, geometry involves two equal-sized spheres in 
contact. Using this geometry, the driving force, curva- 
ture ( ~: = 1/ro), of the initial stage of sintering can be 
approximated. Through these approximations, some 
diffusion flux can then be obtained. As a result, the 
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shrinkage rate dy/dt, for example, in the case of grain- 
boundary diffusion, can be expressed as [43] 

dY KTDTsQ 1 
dt - kT r~X 2 (15) 

where X is the neck size and K 7 is a constant. 
The above equation is a typical equation in "classi- 

cal" sintering models. Employing the concept of these 
well-defined models, sintering equations for spheres 
with different sizes in contact can be obtained. The 
following expression shows such an example for the 
case of three spheres with different sizes in linear 

AL K 8 f,F(l + gs=" ~ (I  + R s , ~  / 
Lo G~/ ' t . i _ \  s2 / Rs3 } J /  

(2 + Rs2 + Rs3)ttl/3 (16) 

where K 8 is a constant, Rs2 =(G2/G1), and Rs3 
= (Ga/G1) (note that G3 > G2 > G1). From the 

above equation, one can find that shrinkage depends 
on not only the values of Rs2 and Rs3 but also the ratio 
of Rs~ to Rs2. A maximum value of the shrinkage rate 
can be found when proper size ratios are selected. In 
other words, the effects of finer and coarser particles 
are "competing" with each other and depend on how 
far apart they are from the size of the centre particle. 

The contribution of particles with various sizes, i.e. 
a multi-component system, can be realized likewise. 
As finer and coarser particles are randomly added into 
mono-sized particles, the sintering rate changes. The 
opposite effects that finer and coarser particles intro- 
duce compete with each other. The resulting sintering 
rate depends on the size deviations of the powders 
added to from the m0no-sized powders. For powders 
characterized by some distribution function f(G), the 
effect of powders with a size falling between G and G 
+ 6G can enter into the sintering equation as ex- 

pressed by Equation 8. Because the size deviations of 
powders in the distribution are represented by the 
standard deviation, the dependence of sintering rate 
on the standard deviation is clear. As the standard 
deviation varies, the individual size deviation varies, 
which yields a changing sintering rate. When the 
competition between finer and coarser particles takes 
place, a maximum sintering rate will be obtained. 

As sintering proceeds, grain growth occurs. During 
this stage, the driving force for sintering is not only the 
reduction of surface energy, i.e. the shrinkage of pores, 
but also the reduction of grain-boundary energy, i.e. 
elimination of grain boundaries through grain growth. 
The effect of particle size on sintering can be realized 
by considering a typical modelling microstructural 
feature as shown in Fig. 5 [45]. The figure illustrates 
that a pore is being carried along by the moving grain 
boundaries. The pore is surrounded by three grains 
with different sizes and the arrows in the figure indi- 
cate the directions of mass flow. Prior to the occur- 
rence of grain growth, the tendency of reducing the 
system energy favours the diffusion of mass from all 
the particles to pores and, as discussed before, smaller 

contact [44]. 
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Figure 5 A pore being carried along with moving boundaries (after 
[45]). Arrows indicate the directions of mass flow. 

particles enhance the sintering rate. The sharp curva- 
ture generated as a result of particle or grain contact 
prevents grain growth from occurring. However, as 
sintering proceeds, the tendency to reduce the system 
energy favours not only surface-energy reduction but 
also grain-boundary energy reduction. Meanwhile, 
pore structure could become similar to that shown in 
Fig. 5 when a small grain encounters two large grains. 

As shown in the pore-grain structure, pore shrink- 
age is largely due to the mass diffusion from the 
large grains. At the same time, the small grain contrib- 
utes much less in reducing the pore size and, as 
required by Equation 11, is giving away mass to the 
large grains to yield grain growth. As a result, the 
beneficial effect of small grains which can be seen in 
the previous stage is diminishing at this stage. On the 
other hand, the drawback of large grains still exists. 

The effect of grain-size distribution on the sintering 
behaviour can also be discussed from a different angle, 
as follows [8]. As grain growth takes place, it is 
important to prevent the occurrence of abnormal 
grain growth. It is known that this can be prevented 
when the pores remain at the grain boundaries. The 
separation of pore and grain boundaries could occur 
when  the grain-boundary velocity, Vb, exceeds the 
pore velocity, Vp. These velocities can be, respectively, 
expressed as in Equations 17 and 18 [44] 

= Mlzr~(,'Yb (I- 1a)[~Np~b ] 
Vb k j 07) 

where m b is the grain-boundary mobility, Np is the 
number of pores per grain, and ~ and 13 are dimen- 
sionless constants. 

Vp = 13MpYrb (18) 

where Mp is the pore mobility. Therefore, the condi- 
tion of interest, i.e. boundary velocity exceeding pore 

velocity (Vb > Vp), becomes 

Gg G > --mr + Np (19) 

Further analysis shows that Equation 19 can be re- 
written as 

(1 ,20, 
with 

13 ( A p-(m+ l)/3 p2/3\ 
I(P,M,,Gg)= ~k]~ b ~gg ~- B ~ - )  (21) 

where A = K9(1~/21/2) {rn+ l)/3, B = Klo(rC/21/2)l/3~, m 
is constant depending on the diffusion path and K 9 

and Klo are constants. It also can be shown that 
A/(MbG~) and B/G3g are of the same order of magni- 
tude. Thus, we can plot the relative values of 
I(P, Mb, Gg) as a function of P, as shown in Fig. 6. 
Also shown in this figure are several horizontal dashed 
lines representing various values of (1 - Gg/G). 

Taking the middle horizontal line as an example, 
one can find that, during densification, pores will 
separate from grain boundaries at some porosity. To 
prevent the pore-boundary separation, one can in- 
crease the ratio of Gg/G as shown in the two lower 
horizontal lines. On the other hand, reducing the 
Gg/G ratio increases the possibility of pore-boundary 
separation. This clearly suggests that powders with a 
narrower initial particle-size distribution are preferred 
in obtaining high-density parts. In other words, for 
several powder batches with the same mean size, the 
one having wider initial particle-size distribution 
width would have a greater tendency of 
pore-boundary separation during grain growth. As a 
result, lower densification can be expected for such 
powders. To prevent pore-boundary separation and 
to ensure higher densification, powders with narrow 
initial particle-size distributions are required. 

{ I I I 

0.0 2.4 4.8 7.2 9.6 12.0 

Porosity (%) 

Figure 6 A plot showing the characteristic function, I, as a function 
of porosity. Also shown are two broken lines representing (1 
- G ~ / ~ ) .  ( ) c , / ~  = 1/5, ( ) ~ , / C  = 1/3. 
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6. Conclusions 
1. A new sintering model, taking into account the 

effect of starting particle-size distribution and the 
effect of grain growth, has been developed. The model 
predicts a dependence of densification on the width of 
starting particle-size distribution. Prior to the occur- 
rence of grain growth, a maximum densification rate 
exists as the starting particle-size distribution width 
increases. 

2. To include the effect of grain growth on den- 
sification rate, a function describing grain-growth kin- 
etics, according to Hiller's theory, was incorporated 
into the modelling. During grain growth, the model 
predicts decreasing densification rate with increasing 
starting particle-size distribution width. 
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